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ABSTRACT

Providing a simplified representation of terrain characteristics has applications to
optimal-path-planning programs using spatial reasoning. Utilizing computer vision
techniques, our program creates polygonal homogeneous vegetation regions based on
map vegetation data from a digitized Defense Mapping Agency database. Boundary
points for regions are identified from the vegetation codes in the database, and then the
boundary contours of the regions are traced using a modified look-left boundary tracing
algorithm. Each region is then represented by a polyline comprised of line segments
that meet a minimum threshold for fit using the linear least-squares criterion. The
segments are determined by first recursively splitting the region boundary until all
segments meet the fit threshold, and then merging adjacent segments that meet the

threshold.
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I. INTRODUCTION

A. BACKGROUND

Recent work at the Naval Postgraduate School has studied methods to determine
the optimal path between two points in terrain. These methods assume that the terrain
can be represented by homogeneous polygonal regions. Attributes of a region can
include the degree of vegetation, type of vegetation, soil composition, elevation, slope,
orientation of the slope, and man-made physical features within the area. Currently the
optimal-path-planning research is using artificial terrain data. A program that will
take Defense Mapping Agency digitized terrain data and create homogeneous regions
would enable researchers to show the real-world feasibility of their path-planning
approaches. In this thesis, we have developed tools to create these regions from
vegetation data recorded at evenly-spaced sample poinis.

To create two-dimensional regions from vegetation data at evenly-spaced points
we used two phases. The first phase identified the boundary points of a homogeneous
region, points halfway between adjacent sampled points of differing vegetation. The
second phase used a split-and-merge method with linear-least-squares constraints to
reduce the complexity of the region boundaries (their number of vertiges). The
simplified regions enable us to represent the terrain characteristics in a clear and

concise manner.




B. ORGANIZATION

Chapter 2 introduces previous work in the areas of region representation by
polylines, split-and-merge algorithms, and the linear-least-squares constraints method of
approximating the fit of points to a line. Chapter 3 describes the Defense Mapping
Agency Databases, and databases used for optimal path planning. In Chapter 4 we
discuss in detail our program. Chapter 5 shows our experimental results in both
qualitative and quantitative terms. Finally, Chapter 6 summarizes our contributions and

discusses some of the possible areas for further research based on this work.




A.

representation consists of a list of points. See Figure 1. A region can be represented

II. REVIEW OF REGION REPRESENTATION BY POLYGONS

POLYLINES

Polylines can be used to approximate the boundary of a region. A polyline

(XLYD) X2,Y2)

(X6,Y6)

(X5,Y5)

(X3,Y3)

(X4,Y4)

POLYLINE = [(X1,Y]), (X2,Y2), (X3,Y3), (X4,Y4),(X5,Y5),(X6,Y6)]

Figure 1 Polyline Representation of a Region




to any degree of accuracy by the polyline depending upon where and how many
points are used [Ref. 1:p. 232].

A common technique used to determine a polyline representing a region is
splitting and merging. It can be proved that the number of line segments in a polyline
constructed using a split and merge algorithm will never be greater than two times the
minimum number of segments for a given line fit criteria {Ref. 2: p.283]. There are
numerous methods to determine whether a given line segment should be split, merged
or left untouched. Usually all methods split segments of a polyline until all
subsegments meet criteria for linearity. Then usually adjacent segments of the polyline
are merged together if they meet other criteria. The methodology used to determine
linearity is problem-domain-dependent.

The linear least-squares method to determine the collinearity of points has been
used in a merge-only scheme [Ref. 3]. Two adjacent points were arbitrarily selected
and points added to their segment until the linear least-square fit of the segment failed
the fit criteria. At that point a new segment was started and the process repeated until
the region was completed. The start point for each segment determines the breakpoints
of the region. The primary disadvantage of this method is that the merging without

backtracking or splitting does not give the most aesthetically pleasing breakpoints.

B. APPROXIMATION OF FIT BY LINEAR LEAST-SQUARES ME:I‘HOD
The fit of a set of points with respect to a given line can be judged using several

techniques. The linear least-squares method sums the squares of the distances from

each data point to the line. In our work the line is determined by the two endpoints

of the boundary-points subset tested. We use the general equation of a line:




Ax+By+C=90 H

Given two endpoints (X1,Y1) and (X2,Y2) of the line segment we can derive the value

of the constants A, B, and C by:

Y-YI =Y2-Y1 (2
X - X1 X2 - X1

Cross multiplying and solving for zero yields:

A=Y1-Y2 3)
B = X2 -XI 4)
C = X1Y2 - X2Y1 (5)

The slope and the intercept are:

M=-A/B (6)

B=-C/B (7)

The linear least-squares fit for n points with respect to the line calculated above is:

FIT = | Zi=i(Azi+ Byi+C)* (8)
n (A2 + B?)




The fit is a calculation of how far on the average the n points are from the line. A
fit of zero means that all of the points lie on the line. By squaring the distance from
the line we give equal weight to points that are on each side of the line. The square

root enables us to renormalize distance from the line.




O1. SPATIAL TERRAIN DATABASES

A. DEFENSE MAPPING AGENCY DATABASES

The Defense Mapping Agency maintains digitized terrain databases for most of
the world. These databases contain information about elevation data, vegetation, bodies
of water, and man-made objects. Typically these databases record data at evenly
spaced sample points in latitude and longitude.

The Digital Terrain and Elevation Data (DTED) database used in our program
contains two types of such information. The terrain elevation and the height of the
vegetation coverage are encoded in two bytes for each sample point. The three most
significant bits are the vegetation code and the remaining 13 bits are the elevation in
feet. The three bits of vegetation code are explained in Figure 2. Vegetation codes
6 and 7 never occured in the terrain samples we selected so we did not provide
additional handling for these codes. The samples are conducted every 12.5 meters.

Each square kilometer or grid square requires 6400 samples (80 * 80) or 12,600 bytes.

B. DATABASE USAGE FOR OPTIMAL-PATH PLANNING

There are several approaches to determine the optimum path between two points.
At the Naval Postgraduate School considerable research is being conducted using spatial
reasoning. Spatial reasoning methods do not use traditional grid terrain modeling
where the terrain is represented by evenly distributed sample points. Instead spatial

reasoning uses descriptive terrain modeling where the terrain is partitioned into




VEGETATION CODE VEGETATION HEIGHT
0 LESS THAN 1 METER
1 1-4 METERS
2 4 - 8 METERS
3 8 - 12 METERS
4 12 - 20 METERS
5 GREATER THAN 20 METERS
6 NO DATA AVAILABLE
7 NOT USED

Figure 2 Vegetation Codes

homogeneous regions. The minimal-energy optimal-path-planning research conducted
by Ron Ross uses partitioned regions based on the slope of the terrain, soil
composition, and other factors [Ref 4].

The first step to implement this work was done by Seung Hee Yee who wrote
a program for planar-patch terrain modeling based on the elevation data [Ref 5]. One
of the three methods that he tested was joint top-down and bottom-up terrain
modeling. His top-down phase used a quadtree subdivision method to divide the
terrain area into regions represented by a plane and the fit of that plane to the data
points. After all subregions meet the appropriate fit threshold, he used a bottom-up
approach to merge similar adjacent regions. His bottom-up phase used two merging

criteria. First, the adjacent planes must have a minimum difference of the squares of




the differences of the respective plane coefficients. Second, the data points from both
regions must be representable by a plane which meets the same fit threshold as in the
top-down phase. If both criteria are met, then the regions are merged and the new
plane is stored along with its fit. During the year since Seung Hee Yee developed
his program, Professor Rowe has improved it by including better techniques to insure
continuity between the planes of adjacent regions. The planar patches or regions from
these programs could be further partitioned into regions of homogeneous vegetation, but
this has not yet been done.

The simplest minimal-energy optimal-path-planning programs run on the order of
N squared with respect to the number of vertices per region and the number of regions.
For this reason it is important to create regions which preserve the topology of the

original sampled data and yet minimize the number of vertices.




IV. IMPLEMENTATION

The program developed is a method to create polygonal homogeneous-vegetation
regions from the Defense Mapping Agency database described in Chapter 3. To form
these regions the program’s first phase identifies which sample points in the database
have different vegetation codes than their neighbors. These sample points are identified
as boundary cells. A boundary-identification algorithm is then used on these boundary
cells to determine sequences of boundary points between regions of different vegetation.
A second phase then takes the sequence of boundary points for each region and
performs a split-and-merge algorithm on the list of those points to redefine the regions

in a more efficient form (one with fewer vertices).

A. DESCRIPTION OF THE BOUNDARY-IDENTIFICATION PHASE

We chose C as the language for the boundary-identification phase. The program
runs using a BSD 4.3 compiler on a VAX 11/785 or on an Integrated Solutions (ISI)
workstation. Appendix B contains the source code for the boundary indentification
phase. This phase requires input from the Defense Mapping Agency DTED database.
This database consists of elevation and vegetation data points every 12.5 meters. Our
program builds regions containing sample points with the same vegetation code for a
one kilometer by one kilometer grid square.

Several assumptions were required in the boundary-identification phase. First,

each region formed is assumed to contain vegetation of only one kind. This is
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fundamental to the concept of homogeneous regions. Second, regions will not consist
of one sample point. These singular points which have no adjacent neighbors above,
below, or beside them are changed to have the same code as the adjacent data point
with the largest vegetation code (i.c. heaviest vegetation). Third, holes in regions will
be detected only in the sense that another region will be formed inside of the outer
region. No special classification is added to a region if it has a hole.

The boundary-identification phase is divided into two passes through the input
data. The first pass identifies the boundary cells. A sample point is considered to be
a boundary cell if any of its four neighbors above, below, or beside it have a different
vegetation code. The sole exception to this rule exists when the point itself or its
differing neighbor are singular points, which are not considered to be boundary cells
in accordance with the second assumption. An example of vegetation codes and
identified boundary cells is shown in Figure 3.

The second pass searches through the identified boundary cells and traces the
contour for each region: as boundary cells are traced, they are marked and identified
with a specific region number. Region numbers are generated as necessary beginning
with 1. The search for a boundary cell to start the contour-tracing for each region is
started in the upper left-hand comer of the input. The grid is searched in a left-to-
right raster scan stopping at the first boundary cell that has not been assigned to a
specific region. After this region has been traced by the contour-tracing algorithm from
this start point. the raster scan continues.

The contour-tracing algorithm follows the traditional eight-connected look-left

algorithm for traversing a maze [Ref. 6:p. 278]. At each boundary cell during the trace

11




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
3 0 0
0 0 0
0 0 0
BOUNDARY NOT BOUNDARY
CELLS CELLS
THE NUMBERS ARE THE VEGETATION CODES

Figure 3 Boundary Cells
the direction of entry determines which way we look to find the next boundary cell;
the direction of entry at the start point is defined to be the raster scan direction.
Normally, we look to the boundary cell to the left of the direction of entry. If this

cell is not a boundary cell of the same vegetation code we look one cell left and
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forward. This process is continued clockwise until we find a boundary cell. The
contour-tracing algorithm is continued until we reach the start point or a border of the
picture (the first pass ensures that either event must eventually occur).

Several additions to the contour-tracing algorithm were included to enable us to
handle conditions along the exterior borders of the overall 1km. by lkm. area. When
the contour tracing reaches an exterior border, a check is made to determine if a border
has previously been encountered for the current region. If a border has not previously
been encountered, the tracing continues in the opposite direction starting at the initial
point; otherwise, tracing stops. See Figure 4. Second, if the initial point of the region
is next to the exterior border the tracing will start away from the border. See Figure
5.

A significant improvement in the representation of the data during this pass is
gained by treating the actual boundary between two regions as the set of all points
half-way between the centers of each pair of adjoining boundary cells with a different
vegetation code. Tracing thus proceeds between these points. This is similar to the
crack edges approach used to represent the boundary between regions in {Ref. 1:p. 78].
Additionally, this technique smooths the staircase effect created by the crack edges
approach. See Figure 6.

The boundary-tracing phase trades memory space for clarity of code. The input
is stored in an 80 x 80 array which represents the vegetation codes at e;ch of the
6400 sampled points in row-major order. The first pass places boundary cells in a
6400 x 5 array in row-major order, classifying each by its x-coordinate, y-coordinate,

vegetation code. whether it is a boundary point, and a flag for marking when the

13




LAST POINT

N 1 ) |

Figure 4 Tracing after Hitting the Border

second pass places the boundary point in a specific region. The second pass stores
into a separate array for each region the sequenced boundary points x-coordinate, y-
coordinate, and vegetation code. The array of regions is output to a formatted file

which will be used as input to the split-and-merge phase described in section B.
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B starts away from the border

FIGURE 5 Conditions for Starting Away from the Border

The boundary-identification phase is limited to grids containing no more than
6400 input data points, and can handle up to 75 output regions of no more than 400
traced points. These constraints were selected to insure the program can handle grid
squares with either many small regions, or grid squares with a few large regions.

Although the normal cases for the boundary tracing algorithm have been tested, the

15
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® REGION BOUNDARY POINTS

B BOUNDARY CELLS

Figure 6 Boundary Point Representation of Boundary Between Regions

handling of all possible cases involving small regions, such as those containing 2
boundary cells near other regions, has not been verified to work, as in some unusual

situations the tracing could skip points.
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B. DESCRIPTION OF THE SPLIT-AND-MERGE PHASE

The split-and-merge phase of the program is written in the M-Prolog
programming language for the Integrated Solutions (ISI) workstations. The list-
processing capabilities of Prolog enables us to treat each region as a list of points and
conduct operations on the members of the list.

The input to the split-and-merge phase is a Prolog fact for each region detected
in the boundary-identification phase. Each fact contains an identification number of
the region, the list of points for the region, the vegetation code of the region, and the
total number of points in the region. See Figure 7. The output of the split-and-merge
phase is a set of facts which contain vegetation codes and lists of the coordinates of
each vertex for the polygonal homogeneous vegetation regions.

The major data structures used in the split-and-merge phase are lists, expressed
as facts asserted throughout the phase. A global variable is created for the processing
of each region. This contains the list of boundary points for that region; indexing
based on the placement of the boundary points in the list is used to access it in the
linear least-squares module. This saves allocated memory in terms of the statement
table. global stack. and the main stack. A segment fact is asserted each time the
linear least-squares fit is calculated for a line segment during the splitting process of
the split-and-merge phase. See Figure 9. These facts are asserted and retracted often
as the program seeks the proper combination of segments.

The split-and-merge phase contains five modules; the source code is contained
in Appendix C. The split-and-merge module controls the phase using the built-in

automatic backtracking of Prolog. The linear least-squares module calculates the fit
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module regions.
[*$eject*/

body.
reg(0,[[0.00,22.5¢0],
[1.0e0,21.0e0],
[1.0e0,21.5¢0],
[2.0e0,21.5€0],

[43.5¢0,0.0¢0]]1.3,62).
reg(1, [[0.0e0,72.5¢0],

/* The first fact describes region number 0. */
/* The region contains 62 data points. */
/* The value for the region is vegetation code 3. */

Figure 7 Input Facts for Split-and-Merge Phase

of points in the vicinity of a line. The list module provides basic Prolog list-
processing predicates. The math module provides math funtions such as the square
root which are not provided in M-Prolog.! Finally, the regions module provides the
data input from the boundary-identification phase.

The split-and-merge phase processes one pair of adjacent regions at a time,
starting with pairs with non-zero vegetation codes. For each adjacent region. the list
of boundary points from the two adjacent regions is intersected to produce a list of

adjacent boundary points. To achieve clean boundaries between the two regions, no

' The source code for the linear least-squares module and most of the math and list
modules were written by Professor Rowe. Prolog predicates written by Professor Rowe are
marked with an asterisk in Appendix C.




asserta(segment(R,N1,N2 Fit12)).

/* R represents the region number of the segment. */
/* N1 and N2 are the vertices of the line segment. */
/* N1 and N2 are integer indices into the list of points */
r* for the region. */
/* Fit12 is the linear least-squares fit of the ponts between N1 and */
r* and N2 and the line defined by N1 and N2. */

Figure 8 Segment Facts

merging of line segments is allowed to use points from boundary point lists of differing
region pairs. See Figure 8. The adjacent point list between the two regions will be
handled twice for the two regions of the pair; however, the list will be split and
merged identically in each case.

The splitting process follows the traditional divide-and-conquer algorithm [Ref 2:p.
282]. The linear least-squares fit is calculated for a segment, and a segment fact is
asserted. If the fit is less than the splitting threshold, the segment is split into two
new line segments which share a common point, the new "breakpoint” between them,
and the old segment fact is retracted. This process continues recursively until there
are no more segment facts to be split.

The calculation of the linear least-squares fit is done in the linear least-squares
module using equation (8) from Chapter 2. The end points of each line segment define
the line that will be tested for the fit. The use of the end points to define the line
segment, rather than searching for the "best" line, enables us to connect adjacent line

segments at exactly the breakpoints.
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Figure 9 Adjacent Regions

The merge process examines each pair of line segments with a common index
number (breakpoint) in the segment facts list. The segments are provisionally merged
and the fit is calculated. If the fit is less than or equal to the merge threshold, the

provisional merge is made permanent. A new segment fact is then asserted, and the

20




two original segment facts are then retracted. This process is continued until no more
adjacent line segments can be merged.

The final process in the linear least-squares module of the split-and-merge phase
takes the list of index numbers (representing the placement of the boundary points
within the input list) and finds their actual x and y-coordinates. This shortened list is

then bound to a newregion fact along with the value of the region.
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V. RESULTS

A. PERFORMANCE MEASURES OF THE BOUNDARY-IDENTIFICATION
PHASE

In test runs, the boundary-identification phase appears to properly define the
boundaries of both convex and concave regions, including regions with holes. The
maximum error for any point cn the region boundary is equal to one half of the
distance between the sample points, ignoring singular points. Since the input data
points were evenly spaced every 12.5 meters, the maximum error at any point is equal
to 6.25 meters.

The phase is memory-intensive. The program allocates 196800 bytes for the
three arrays that are used to temporarily store information. This is more than three
times the number of bytes required to process any of the test grid squares. Since we
are not trying to optimize the code, we allocated more room than would probably be
needed. Extensive use of file 1/O, and the N squared nature of the boundary-
identification algorithm, where N is the length of the square grid, slow the program

to an average run time of | minute.

B. PERFORMANCE MEASURES OF THE SPLIT-AND-MERGE PHASE
The regions obtained from the split-and-merge phase appear to represent the
input database without significant error. Examples of input terrain and the regions

formed are contained in Appendix A. As expected, the fit threshold determines the
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number of vertices for the output regions. Table 1 shows several thresholds and the
resulting number of vertices for each region.

TABLE 1 EFFECT OF VARYING THE THRESHOLD ON THE NUMBER OF
VERTICES PER REGION

NUMBER OF POLYGON VERTICES
REGION #| THRESHOLD THRESHOLD THRESHOLD THRESHOLD
0.10 1.0 2.50 10.0

0 21 11 7 3

1 3 3 2 2

2 5 4 3 2

3 23 15 9 5

4 21 11 6 4

5 21 12 4 4

6 18 12 7 4

A threshold of 0.01 allows almost no merging. Conversely, a threshold of 10.0
reduces the regions to only a few vertices.

The split-and-merge phase is expensive in both time and space. Table 2 shows
the maximum observed quantities for the Main Stack, Global Stack, Statement Table,
Evaluations, cpu run time, and the real run time. The stacks and statement table are
managed dynamically in our program, so the numbers vary through the running of the

program. The higher numbers were obtained while processing large lists in the linear
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TABLE 2 MAXIMUM OBSERVED SIZE FOR M-PROLOG SYSTEM
PARAMETERS IN THE SPLIT-AND-MERGE PHASE

PARAMETERS QUANTITY
MAIN STACK 1057 ITEMS
GLOBAL STACK 4544 TTEMS

STATEMENT TABLE 66,939 STATEMENTS

CPU RUN TIME 20 MINUTES
23 SECONDS
REAL RUN TIME 30 MINUTES

least-squares module. Prior to entering the linear least-squares module the Main
Stack, Global Stack, and the Statement Table were 860 items, 660 items, and 60,836
statements respectively. These numbers only reflect the points in the program that we
observed the system parameters. It is possible that these parameters could exceed the

figures stated in Table 2 in other portions of the program.
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V1. CONCLUSION

The primary objective of this work was twofold. First, we needed to show the
feasibility of creating a polygonal region representation of terrain vegetation from
digitized map data. Our program shows that this can be done. The program provides
a suboptimal solution that visually appears to properly represent the terrain. But the
split-and-merge phase of the program is time-consuming as the program searches for
proper line segments. The many calculations involved implementing the fit calculations
in M-Prolog is the main reason; other less mathematical methods for determining the
fit of lines do exist and could easily veplace the linear least-squares calculations without
changing the rest of the split-and-merge phase.

The second objective of this work was to provide a working tool for path-
planning research at the Naval Postgraduate School. This program will enable
researchers to create polygonal regions of terrain vegetation.

The program only considers a 1km. by 1km. grid square. A more useful program
for optimal path planning could consider much larger areas of terrain. This would
probably require more efficient data storage in the boundary-identification phase and
possibly optimizing and compiling the split-and-merge phase. An altemnative and less
costly technique would take the results from several adjacent grids and attempt to
splice regions together that hit their respective borders.

Another topic for future research would be overlaying the results of this work

with the three-dimensional planar-patch terrain models that Seung Hee Yee and

25




Professor Rowe developed. This would create partitioned homogeneous regions of

constant slope as well as vegetation.
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APPENDIX A TEST RESULTS
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Figure 5.4 Raw Data for 35 5§7° 30 "N, 121 I7"W
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APPENDIX B SOURCE CODE FOR THE BOUNDARY-IDENTIFICATION
PHASE

#include <ctype.h>
#include <stdio.h>
#include <math.h>
#include "header.h”

unsigned short vegarray[80]{80];
unsigned short bndpts[6400][5]; /* 6400 pts x, y, value, boundary?, reg? */

float regs{75][400][3]; /* 75 regions x 400 pts with x1, yl in array coords */
/* and the region value. */

unsigned short pnt;
unsigned short veg;
unsigned short new_val;
unsigned short curr_dir;
unsigned short curr_pt;
unsigned short curr_x;
unsigned short curr_y;
unsigned short neighbor_x;
unsigned short neighbor_y;
unsigned short i,j.k;
boolean found_next;
boolean hit_border;
boolean stop_tracing;
boolean trace_counter;
boolean trace_border;
boolean start_counter;

int fdin;

main()
{
unsigned short x,y;
int is_not_singlept();
int single_adjacent_pt();
int is_boundarypt. j;
int can_extend();
int adjacent_border():




int curr_dir_diagonal();
int start_backwards();
fdin = open(infile,0);
creates the vegatation array 80 x 80 with values */
for (x=0; x < 80; x++){
for (y = 0; y < 80; y++){
read(fdin, &veg, 2);
vegarray[x][y] = veg - 48;

0,
/* The current point in the second pass */
/* The first four border regions are initiated w/out j */
; /* Next point # for current region being traced */
0, x < 80; x++){

-

n

t-qwh-. hl.-u‘_
g TR

39o9.°. "

(y = 0; y < 80; y++){
fxX=0llx=79lly=0Ily =79) {
bndpts(pnt]{0] = x;
bndpts[pnt][1] = y;
bndpts[pnt][2] = vegarray[x][y];
bndpts[pnt][3] = FALSE;
bndpts[pnt][4] = TRUE;
)
else if (((vegarray[x]ly] != vegamray[x}{y+1] &&
is_not_singlept(x,y+1)) Il
(vegarray[x]{y] != vegarray[x+1]{y] &&
is_not_singlept(x+1.y)) |l
(vegarray[x]{y] != vegarray(x][y-1] &&
is_not_singlept(x,y-1)) Il
(vegarray[x][y] != vegarray[x-1][y] &&
is_not_singlept(x-1,y))) &&
is_not_singlept(x,y)){
bndpts[pnt][0] = x;
bndpts[pnt][1] = y:
bndpts[pnt](2] = vegarray[x}[y]:
bndpts[pnt]{3] = TRUE,
bndpts{pnt]{4] = FALSE:
boxoaf ¥/
else if (single_adjacent_pt(x,y)) {
bndpts[pnt][0] = x;
bndpts[pnt][1] = y;
bndpts[pnt][2] = new_val,
bndpts{pnt][3] = TRUE;
bndpts[pnt][4] = FALSE,
}o/*if ¥/
else |




bndpts[pnt](0] = x;
bndpts[pnt][1] = y;
bndpts[pnt][2] = vegarray[x]ly];
bndpts[pnt][3] = FALSE;
bndpts[pnt]{4] = FALSE;
)
pnt++;
} /* fory*
) /* for x */
/* The second Pass through the data base starts here. This pass traces  */
/* the boundaries of each region by scanning through the entire DB looking */
/* for a boundary point. Once a boundary point is found it starts tracing */
/* around the region. The output is to the regs set of arrays. */

while (i < 6400) {
curr_dir = North;
k=0;
hit_border = FALSE;
trace_border = FALSE;
if (is_boundarypt()) {
curr_pt = i;
curr_x = bndpts[curr_pt][0];
curr_y = bndpts[curr_pt]{1];
stop_tracing = FALSE;
trace_counter = FALSE;
start_counter = FALSE;
if (adjacent_border(})
connect_border();
if (start_backwards()) {
start_counter = TRUE;
trace_counter = TRUE;
hit_border = TRUE;
curr_dir = SEast;
)
do {
if (start_counter) {
right_front_neighbor(),
add_point();
found_next = FALSE;,
while (!found_next) {
if (can_extend()) {
move_curr_dir();
found_next = TRUE;
}
else |
look_left_one():




if (can_extend()) {
move_curr_dir();
found_next = TRUE;
)
else {
front_neighbor();
add_point();
look_left_one();
} /* inner else */
}  /* outer else */
} /* while not found next */
start_counter = FALSE;
)} /* if start counter */
else if (trace_counter && curr_dir_diagonal()) {
right_rear_neighbor();
add_point();
look_right_two();
found_next = FALSE;
while (!found_next){
if (can_extend()) {
move_curr_dir();
found_next = TRUE;,
}
else |
look_left_one();
if (can_extend()) {
move_curr_dir();
found_next = TRUE;
}
else {
front_neighbor();
add_point();
look_left_one().
} /* inner else */
} /* outer else */
) /* while not found_next */
if (curr_pt == i)
continue;
} /* if curr dir is diagonal and tracing counter clockwise */
else if (trace_counter && ! curr_dir_diagonal() &&
Itrace_border) |
right_neighbor();
add_point();
look_right_one();
found_next = FALSE;
while (!found_next) |
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if (can_extend()) {
move_curr_dir();
found_next = TRUE;
)
else {
look_left_one();
if (can_extend()) {
move_curr_dir();
found_next = TRUE;
}
else {
front_neighbor();
add_point();
look_left_one();
} /* inner else */
} /* outer else */
} /* while not found_next */
if (curr_pt == i)
continue;
} /* else curr_dir is not diagonal */
else if (curr_dir_diagonal()) {
left_rear_neighbor();
add_point();
look_left_two();
found_next = FALSE;
while (!found_next){
if (can_extend()) {
move_curr_dir();
found_next = TRUE:
)
else {
look_right_one();
if (can_extend()) {
move_curr_dir();
found_next = TRUE;
)

else (
front_neighbor();
add_point();

look_right_one():
}/* inner else */
)} /* outer else */
) /* while not found_next */
if (curr_pt == i)
continue;
}/* if curr dir is diagonal */
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/ﬁ e 2 2ie e e e afe 2 20 ke e sfe afe 2he aje ok 2 2be abe e ofe e ke ClSC Cllﬂ'_dil' is not diagonal bk ek t/
else if (!trace_border) {
left_neighbor();
add_point();
look_left_one();
found_next = FALSE;,
while (!found_next) {
if (can_extend()) {
move_curr_dir();
found_next = TRUE,;
}
else |(
look_right_one();
if (can_extend()) {
move_curr_dir();
found_next = TRUE,;
}
else (
front_neighbor();
add_point().
look_right_one();
} /* inner else */
} /* outer else */
}  /* while not found_next */
if (curr_pt == i)
continue;
} /* else curr_dir is not diagonal */
if (adjacent_border()) {
bndptsfcurr_pt]{4] = TRUE;
connect_border();
} /* if current point is adjacent border */
} while ((!(curr_pt == i && !(trace_counter))) &&
!(stop_tracing)):

/* If the region has the same start and end point make the last point the */
/* same as the first point. */
if ((curr_pt == i) && ('hit_border))
duplicate_first_pt();

/* Set a flag at the end of each region so the output routine knows to stop */
regs[j](k][0] = 9999;
regs(jlik][1] = 9999.
j++; /* increment region number */
} /* if is boundary point */
i++, /* increment point number that we are checking for bndy */
} /* while i < 6400 */
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print_output_regions();

} /* main for file bndpts.c */

/*‘***#*END of file BNDP’I‘SC t#**********#ll****#****&t***#*t#***‘*/
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File BNDUTIL.C
/* This file contains the necessary functions to execute the bndpts.c program.*/

#include <ctype.h>
#include <stdio.h>
#include "header.h”

extern unsigned short veg;

extern unsigned short new_val,;

extern unsigned short curr_dir;

extern unsigned short curr_pt;

extern unsigned short curr_x;

extern unsigned short curr_y;

extern unsigned short i,jk;

extern unsigned short neighbor_x;
extern unsigned short neighbor_y;
extern boolean trace_counter;

extern boolean trace_border;

extern boolean stop_tracing;

extern boolean hit_border;

extern unsigned short vegarray[80]{80];
extern unsigned short bndpts[6400](5];
extern float regs[75][400](3];

extern int fdout;

extern int is_boundarypt();

extern int is_singlept();

extern int single_adjacent_pt();

/* ****************************************************#*************/

int is_not_singlept(x,y)

unsigned short x.y:

{

return (vegarray[x][y] == vegarray[x+1]{y] !l

vegarray[x][y] == vegarray[x-1][y] I
vegarray{x]ly] == vegarray[x][y+1] |l
vegarray[x]ly] == vegarray[x]iy-1]),

} /* function is_not_singlept */

/* e ade 3 e e 3be afe e she ok sk s sk 3 2be abe o e e e e s 2k 2 3 abe ok e ke e ke s e 2 afe e e ke e e ke sk e s sk e she abe e ke e e e s e 3k afe ke ke ake e e e e e ke ok ok Kk

*/

int single_adjacent_pt(x,y)

unsigned short x,y:

/* First find the maximum 4 way neighbor of the point. */
new_val = (;
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if (vegarray[x + 1] [y] > vegarray(x](y + 1])
new_val = vegarray[x+1][y];

if (vegarray(x][y-1] > vegarray{x+1]{y])
new_val = vegarray[x][y-1];

if (vegarray([x-1]{y] > vegarray[x](y-1])
new_val = vegarray[x-1]{y];

if (vegarray[x][y+1] > vegarray([x-1][y])
new_val = vegarray[x][y+1];

/* Second, retumn true if the point has 4 way neighbors with at least two */
/* different values. Retumns largest neighbors value as new_val. */

return(! is_not_singlept(x,y) &&
(vegarray[x+1][y] !'= vegarray[x][y+1]} Il
vegarray[x+1][y] != vegarray[x]{y-1] Il
vegarray[x+1][y] !'= vegarray[x-1]ly]);

} /* function single_adjacent_pt */

JH ok Rk ok kR s K ok ol okl kR iR ok otk ok ok s ok ek ko ok ok
*/
/* A point is a bound int if it is a bound and it is not already */
P } ) y
/* part of a region and it does not have a value of zero. */

int is_boundarypt()
{
return (bndpts[i}[3] == TRUE && bndpts[i]{4] == FALSE &&
bndpts[i}[2] '= 0).
} /* function is_boundarypt */

/* e 2e e 3¢ e dhe sk e e ke 2k e e ke e e e e e e 3k 3fc 2k e e 3k 3k e ke ke e ke sk g e 2k e 3k e 3k ez sfe e sk ke e e e 3k e 3k e de e aie e e e e ok sk e e ke ok e ok ok
*/
/* A region is extended if the point in the curr direction is a boundary */
/* and the point in the curr direction is the same value as the current */
/* point. */
~
int can_extend()
{
switch (curr_dir)
{
case North:  retumn (bndpts[curr_pt + 1][3] == TRUE &&
bndpts[curr_pt + 1]{2] == bndpts[curr_pt][2]);
case NEast: retum (bndpts[curr_pt + 81]({3] == TRUE &&
bndpts[curr_pt + 81}{2] == bndpts{curr_pt]{2}),
case East: return (bndpts[curr_pt + 80][3] == TRUE &&
bndpts{curr_pt + 80]{2] == bndpts[curr_pt][2]);




if (bndpts{curr_pt}{0] == 1) {
if (bndpts[curr_pt](2] != bndpts[curr_pt + 1][2]) {

if (bndpts[curr_pt]{2] == bndpts[curr_pt -79][2]) {
regs(jl(k][0] = 0.0;
regs(jllk](1] = (float)(curr_y + 1.5);
regs[jllk](2] = (float)(bndpts{curr_pt][2]);
k++;

)

else if (bndpts{curr_pt]{2] == bndpts{curr_pt -80](2]) {
regs{jl(k][0] = 0.0,
regs(jlik]{1] = (float)(curr_y + 0.5); .
regs[jllk](2] = (float)(bndpts[curr_pt][2]});
k++;

}

else {
regs(jl[k]{0] = 0.0,
regs[jllk][1] = (float)(curr_y - 0.5);
regs[jlk][2] = (float)(bndpts[curr_pt][2]);
k++;

)

if (hit_border) |{

stop_tracing = TRUE;

}

else {
hit_border = TRUE,;
curr_pt = i;

curr_x = bndpts[curr_pt][0]:

curr_y = bndpts[curr_pt][1];

curr_dir = East;

}

}
clse if (bndpts[curr_pt][2] != bndpts{curr_pt - 1]{2]) {

if (bndpts{curr_pt}{2] == bndpts[curr_pt - 81][2]) (
regs(j](k]{0] = 0.0:
regs(jj{k](1] = (float)(curr_y - 1.5);
regsljllk](2] = (float)(bndpts{curr_pt][2]);
k++;

}

else if (bndpts[curr_pt}[2] == bndpts[curr_pt - 80][2]) {
regs[jl[k}[(0] = 0.0;
regs(jllk]}(1] = (float)curr_y - 0.5);
regs(jlik](2] = (float)(bndpts[curr_pt][2]);
k++;

}

else {
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regs[jl[k][0] = 0.0;
regs{jlk][1] = (float)(curr_y + 0.5);
regs|jllk]{2]) = (float)(bndpts[curr_pt][2]);
k++,;

} /* 3rd level else */

if (hit_border)
stop_tracing = TRUE,;

else {
hit_border = TRUE;
trace_counter = TRUE;
curr_dir = South;
curr_pt = i;

curr_x = bndpts[curr_pt]{0];

curr_y = bndpts[curr_pt][1];

}

} /* 2nd level else */

else if (trace_counter) {
trace_border = TRUE;
right_neighbor(),
add_point();
curr_dir = North;
move_curr_dir();
}
else if (!trace_counter) |
trace_border = TRUE;
left_neighbor();
add_point();
curr_dir = South;
move_curr_dir();
)
) /* Ist level if */

if (bndpts{curr_pt}{0] == 78) |{
if (bndpts[cuir_ptj[2] = bndpts[curr_pt + 1][2]) {

if (bndpts[curr_pt]{2] == bndpts[curr_pt + 81}{2]) {
regs[jlk][0] = 79.0;
regs(jl(k][1] = (float)(curr_y + 1.5);
regs[j](k}{2] = (float)(bndpts[curr_pt]{2]);
k++,

)

else if (bndpts[curr_pt)[2] == bndpts[curr_pt + 80)[2]) {
regs(j]JIk][0] = 79.0;
regs[jllk]{1] = (float)(curr_y + 0.5);
regs(jJtk](2] = (float)(bndpts[curr_pt][2));
k++:
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}

else {
regs{jl[k]1[0] = 79.0,
regs{jlik]{1] = (float)(curr_y - 0.5);
regs[jl(k]{2] = (float)(bndpts{curr_pt}{2]);
k++;
}
if (hit_border)
stop_tracing = TRUE,
else {
hit_border = TRUE;
trace_counter = TRUE;
curr_dir = South;
curr_pt = i,
curr_x = bndpts[curr_pt][0];
curr_y = bndpts[curr_pt][1];
}

}
else if (bndpts[curr_pt]{2] != bndptsfcurr_pt - 1][2]) {
if (bndpts[curr_pt][2] == bndpts[curr_pt + 79][2]) {
regs[jl(k](0] = 79.0;
regs(jl(k](1] = (float)(curr_y - 1.5);
regsf{jl(k]i2] = (float)(bndpts[curr_pt][2]),
k++:
}
else if (bndpts{curr_pt][2] == bndpts[curr_pt + 80][2]) {
regs[jl(k}](0] = 79.0,
regs[jllk][1] = (float)(curr_y - 0.5).
regs[jl{k][2] = (float)(bndpts[curr_pt}[2]),
k++;

else {
regs[jl[k][0] = 79.0:
regs[jlik][1] = (float)(curr_y + 0.5);
regs(jl(k](2] = (float)(bndpts{curr_pt]{2));
k++;
} /* 3rd level else */
if (hit_border)
stop_tracing = TRUE;
else |
hit_border = TRUE;
trace_counter = TRUE;
curr_dir = South;
curr_pt = i,
curr_x = bndpts[curr_pt][0];
curr_y = bndpts{curr_pt][1].
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)

)

}
/* 2nd level else */

else if (trace_counter) {

}

trace_border = TRUE;
right_neighbor();
add_point();

curr_dir = South;
move_curr_dir();

else if (!trace_counter) {

trace_border = TRUE;
left_neighbor();
add_point();

curr_dir = North;
move_curr_dir();

[* 1st level if */

if (bndpts[curr_pt][1] == 1) |
if (bndpts[curr_pt}{2] '= bndpts{curr_pt -80][2]) {

if (bndpts[curr_pt][2] == bndpts[curr_pt - 81][2]) {
regs[j)[k)[0] = (float)(curr_x - 1.5);
regs(jlk][1] = 0.0,
regs[jlikl[2] = (float)(bndpts[curr_pt][2]);
k++;

}

else if (bndpts[curr_pt][2] == bndpts[curr_pt - 1][2]) {
regs|j]J[k]I0] = (float)(curr_x - 0.5);
regs(jlik][1] = 0.0;
regs[jlk][2) = (float)(bndpts[curr_pt][{2]);
k++;

)

else |{
regs[j}[k][0] = (float)(curr_x + 0.5),
regs(jllk}{1] = 0.0,
regsjl(k][2] = (float)(bndpts[curr_pt][2]).
k++:

)

if (hit_border)
stop_tracing = TRUE,

else |{
hit_border = TRUE,
trace_counter = TRUE;
curr_dir = South;
curr_pt = i;

curr_x = bndpts{curr_pt}{0].

curr_y = bndpts[curr_pt][1];
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)
)

else if (bndpts[curr_pt](2] != bndpts[curr_pt + 80]{2}) {

if (bndpts[curr_pt]{2] == bndpts[curr_pt + 79]{2]) {
regs[jJ(k]{0] = (float)(curr_x + 1.5);
regstjlk]{1] = 0.0,
regs(jlik](2] = (float)(bndpts{curr_pt][2]);
k++;

}

else if (bndpts[curr_pt][2] == bndpts[curr_pt - 1]{2]) {
regs(jl(k]{0] = (float)(curr_x + 0.5);
regs(jlk][1] = 0.0;
regs(jl{k]{2] = (float)(bndpts[curr_pt][2]);
k++;

}

else {
regs[jl[k]{0] = (float)(curr_x - 0.5);

regs[jl(k](1] = 0.0;
regs[jl(k}{2] = (float)(bndpts[curr_pt][{2]});

k++;

}/* 3rd level else */

if (hit_border)|
stop_tracing = TRUE;

)

else |
hit_border = TRUE;
trace_counter = TRUE;
curi_dir = South;
curr_pt = i
curr_x = bndpts[curr_pt]{0}];
curr_y = bndpts[curr_pt][1]:
)
) /* 2nd level else */
else if (trace_counter) |
trace_border = TRUE.:
right_neighbor();
add_point(),
curr_dir = West;
move_curr_dir();
)
else if (!trace_counter) |
trace_border = TRUE;
left_neighbor():
add_point():
curr_dir = East;
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move_curr_dir();
}
} /¥ 1st level else */
if (bndpts{curr_pt]{1] == 78) {
if (bndptsfcurr_pt](2] != bndpts{curr_pt - 80](2]) {
if (bndpts{curr_pt]{2] == bndpts[curr_pt - 79](2]) (
regs{jl{k])[0] = (float)(curr_x - 1.5);
regs[jllk)[1] = 79.0;
:(CESU][k]UZ] = (float)(bndpts[curr_pt][2]);
++,

J

else if (bndpts[curr_pt][2] = bndpts[curr_pt + 1}{2]) {
regs[jl[k)[0] = (float)(curr_x - 0.5);
regs(jlk](1] = 79.0,
regs(jlk][2] = (float)(bndpts[curr_pt][2]);
k++;

}

else |
regs[j)[k][0] = (float)(curr_x + 0.5);
regs(jltk][1] = 79.0;
regs(jl[k]{2] = (float)(bndpts[curr_pt][2]);
k++;

}

if (hit_border)
stop_tracing = TRUE;
else {
hit_border = TRUE;
trace_counter = TRUE;
curr_dir = South;
curr_pt = i
curr_x = bndpts[curr_pt]{0];
curr_y = bndpts{curr_pt][1];
)
}

else if (bndpts[curr_pt}[2] != bndpts[curr_pt + 80](2]) {

if (bndpts[curr_pt}[2] == bndpts[curr_pt + 81][2]) {
regs{jl[k][0] = (float)(curr_x + 1.5);
regs[ji{k](1] = 79.0;
regsfjlk][2] = (float)(bndpts[curr_pt](2]);
k++:

}

else if (bndpts[curr_pt]{2] == bndpts[curr_pt + 1][2]) {
regs[jl(k](0] = (float)(curr_x + 0.5);
regs{jllk](1] = 79.0:
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regs(jllk](2] = (float)(bndpts[curr_pt](2]);
k++;
)
else {
regs{j)ik][0] = (float)(curr_x - 0.5);
regs{jlk]{1] = 79.0;
i l1:=SSLi][k][2] = (float)(bndpts[curr_pt][2]);
++;
} /* 3rd level else */

if (hit_border)
stop_tracing = TRUE;
else {
hit_border = TRUE,;
trace_counter = TRUE,
curr_dir = South;
curr_pt = i;
curr_x = bndpts[curr_pt][0];
curr_y = bndpts[curr_pt][1];

)

}  /* 2nd level else */

else if (trace_counter) |{
trace_border = TRUE;
right_neighbor(),
add_point();
curr_dir = East;
move_curr_dir();

)

else if (!trace_counter) |
trace_border = TRUE;,
left_neighbor();
add_point();
curr_dir = West,
move_curr_dir();

)

} /* Ist level if */
hit_border = TRUE;

} /* function connect_border */

/************************************************t**************#*********/

/* Inserts a point to the current region output database, and increments */
R /* the point count. */




add_point()

{
regs[jlik}(0] = (float) (curr_x + neighbor_x)/2;
regs{jl(k](1] = (float) (curr_y + neighbor_y)/2;
regs(jlik](2] = (float) (bndpts[curr_pt][2]);
k++; /* increment next point to be added to the region */

} /* function add_point */

[ AA R R R RO Rk R R Rk R R R Rk Rk

/* Inserts a point to the current region output database, and increments */
/* the point count. This is used when the region is closed, and the */
/* first point is the same as the last point. */

duplicate_first_pt()

{
regs[jlk][0] = regs[j][0](0];
regs[jlik][1] = regs[j][0](1];

k++; /* increment next point to be added to the region */

} /* function duplicate_first_pt */

/***#****************************************************************#****/

/* Gets the x,y of the point to the left of the curr point. */
/* If we are tracing counterclockwise,:we get the x,y of point to the right */

left_neighbor()
{

switch (curr_dir)
{
case North : neighbor_x = curr_x - 1;
neighbor_y = curr_y;

break;

case NEast : neighbor_x = curr_x -1;
neighbor_y = curr_y +1;
break;

case East : neighbor_x =. curr_x;
neighbor_y = curr_y + 1;
break;

case SEast : neighbor_x = curr_x + 1;
neighbor_y = curr_y + 1;
break:

case South : neighbor_x = curr_x +I;
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neighbor_y = curr_y;
break;

case SWest : neighbor_x = curr_x + 1,
neighbor_y = curr_y - 1;

break;

case West :  neighbor_x = curr_x;
neighbor_y = curr_y - 1;
break;

case NWest : neighbor_x = cumr_x - 1;
neighbor_y = curr_y - 1;
break;

default: printf("Error curr-dir != 0-7");
break;

} /* switch */
} /* function */

/******************************************************************/

/* Gets the x,y of the left rear neigbor of the current point.  */

left_rear_neighbor()
{
switch (curr_dir)
{
case North : neighbor_x = curr_x - 1;
neighbor_y = curr_y - 1,
break;
case NEast : neighbor_x = curr_x -1;
neighbor_y = curr_y;

break:

case East : neighbor_x = curr_x - 1;
neighbor_y = curr_y + 1,
break:

case SEast : neighbor_x = curr_x;
neighbor_y = curr_y + 1,
break:

case South : neighbor_x = cumr_x + 1;
neighbor_y = curr_y + 1.
break;

case SWest :  neighbor_x = curr_x + I;
neighbor_y = curr_y,

break;

case West : neighbor_x = curr_x + 1;
neighbor_y = curr_y - 1;
break;
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case NWest : neighbor_x = cumr_x;
neighbor_y = curr_y - 1;
break;

default: printf("Error curr-dir != 0-7");
break;

} /* switch */

} /* function /*

/t***************#****************t**********t******t*#**t*#***t*t*/

/* Gets the x,y of the left front neighbor of the current point. */

left_front_neighbor()
{
switch (curr_dir)
{
case North : neighbor_x = curr_x - 1,
neighbor_y = curr_y + 1;
break;
case NEast : neighbor_x = curr_x;
neighbor_y = curr_y +1;

break;

case East : neichbor_x = curr_x + 1;
neighbor_y = curr_y + 1;
break;

case SEast : neighbor_x = curr_x + 1;
neighbor_y = curr_y;
break:

case South : neighbor_x = cumr_x +1;
neighbor_y = curr_y - 1;

break;

case SWest : neighbor_x = curr_x;
neighbor_y = curr_y - 1;
break;

case West :  neighbor_x = curr_x - 1;
neighbor_y = curr_y - 1;
break;

case NWest : neighbor_x = curr_x - 1;
neighbor_y = curr_y;
break;

default: printf("Error curr-dir '= 0-7");
break;

)} /* switch */

} /* function */
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/#t**#****************#*##**#*#t#***#t##t###**#t#t#***##**#*‘#t‘*#*/

/* Gets the x,y of the front neighbor of the current point. */
front_neighbor()

- {
if (! trace_counter) {
switch (curr_dir)
- {
case North : neighbor_x = curr_x;
neighbor_y = curr_y + 1,
break;
case NEast : neighbor x = curr_x + 1;
neighbor_y = curr_y + 1,

break:

case East : neighbor_x = curr_x + I,
neighbor_y = curr_y;
break;

case SEast : neighbor_x = curr_x + I;
neighbor_y = curr_y - 1;
break;

case South : neighbor_x = curr_x;
neighbor_y = curr_y - 1,
break;

case SWest : neighbor_x = curr_x - 1;
neighbor_y = curr_y - |;

break;

case West :  neighbor_x = curr_x - 1.
neighbor_y = curr_y;
break;

case NWest :  neighbor_x = curr_x - 1;
neighbor_y = curr_y + 1;
break:

default: printf("Error curr-dir !'= 0-7"),
break;

} /* switch */
} /* if trace left */
else |
switch (curr_dir)
{
case North : neighbor_x = cumr_x;
neighbor_y = curr_y + 1,
break;
case NEast : neighbor_x = curr_x + 1;
neighbor_v = curr_y + 1.
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break;

case East : neighbor_x = curr_x + 1;
neighbor_y = curr_y;
break;

case SEast : neighbor_x = curr_x + 1;
neighbor y = curr_y - |;
break;

case South : neighbor_x = cumr_x;
neighbor_y = curr_y - [;
break;

case SWest : neighbor_x = cumr_x - 1;
neighbor_y = curr_y - 1;

break;

case West : neighbor_x = curr_x - 1,
neighbor_y = curr_y;
break;

case NWest : neighbor_x = curr_x - 1;
neighbor_y = curr_y + 1,
break;

default: printf("Error curr-dir != 0-7");
break;

} /* switch */
)} /* else trace right */
} /* function */

/**********************************************#**************************/

/* Gets the x,y of the point to the left of the curr point. */
/* If we are tracing counterclockwise, we get the x,y of point to the night */

right_neighbor()
{

switch (curr_dir)

{

case North : neighbor_x = curr_x + 1I;
neighbor_y = curr_y;
break;

case NEast : neighbor_x = curr_x +1;
neighbor_y = curr_y -1;

break;

case East : neighbor_x = curr_x;
neighbor_y = curr_y - 1;
break,

case SEast : neighbor_x = curr_x - 1;
neighbor_y = curr_y - I;
break:
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case South : neighbor_x = cumr_x -1;
neighbor_y = curr_y,
break;

case SWest : neighbor_x = curr_x - 1;
neighbor_y = curr_y + I;

break;

case West : neighbor_x = curr_x;
neighbor_y = curr_y + 1;
break;

case NWest : neighbor_x = cumr_x + 1;
neighbor_y = curr_y + 1;
break;

default: printf("Error curr-dir != 0-7"),
break;

} /* switch */
} /* function */

/*#****************************************1‘*#*#**********t***************/

/* Gets the x,y of the point to the right front of the curr point. */

right_front_neighbor()
{
switch (curr_dir)
{
case North : neighbor_x = curr_x + [;
neighbor_y = curr_y + 1;
break:
case NEast : neighbor_x = curr_x + 1;
neighbor_y = curr_y;

o

break;

case East : neighbor_x = curr_x + [;
neighbor_y = curr_y - 1;
break:

case SEast : neighbor_x = cumr_x;
neighbor_y = curr_y - 1;
break,

case South : neighbor_x = curr_x - 1;
neighbor_y = curr_y - I;

break;

case SWest :  neighbor_x = curr_x - 1,
neighbor_y = curr_y:
break;

case West :  neighbor_x = curr_x - 1;

neighbor_y = curr_v + I;




break;

case NWest : neighbor_x = curr_x;
neighbor_y = curr_y + 1;
break;

default: printf("Error curr-dir != 0-7"),
break;

} /* switch */
} /* function */

/#****** ******************#*********#**‘#**#t#******#t*#**#t##t#‘##*#t‘ttt/

/* Gets the x,y of the point to the right rear of the curr point. */

right_rear_neighbor()
{
switch (curr_dir)
{
case North : neighbor_x = curr_x + 1;
neighbor_y = curr_y - 1,
break;
case NEast : neighbor_x = curr_x;
neighbor_y = curr_y - 1;

break;

case East : neighbor_x = cumr_x - 1I;
neighbor_y = curr_y - 1,
break;

case SEast : neighbor_x = curr_x - 1;
neighbor_y = curr_y;
break;

case South : neighbor_x = curr_x - I;
neighbor_y = curr_y + 1I;
break:

case SWest :  neighbor_x = curr_x;
neighbor_y = curr_y + 1,

break;

case West : neighbor_x = curr_x + 1,
neighbor_y = curr_y + 1,
break;

case NWest : neighbor_x = curr_x + 1;
neighbor_y = curr_y;
break;
default: printf("Error curr-dir != 0-7");
break;
} /* switch */
) /* function */
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/*#**************t#*****##********t****#****#***t***#******##tt‘ttt*t**t**/

/* Marks the current point as used in a region, and changes the current */
/* point in the direction of the current direction. Changes the curr_x, */
/* and curr_y to correspond with the new current point. */

move_curr_dir()

{
bndpts[curr_pt][4] = TRUE;
switch (curr_dir)
{

case North : curr_pt = curr_pt + 1;

break;

case NEast : curr_pt = curr_pt + 81;
break;

case East : curr_pt = curr_pt + 80;
break;

case SEast : curr_pt = curr_pt + 79,
break;

case South : curr_pt = curr_pt - 1;
break;

case SWest :  curr_pt = curr_pt - 81;
break;

case West : curr_pt = curr_pt - 80;
break;

case NWest : curr_pt = curr_pt - 79,
break;

default : printf("Curr_dir '= 0-7");
break;

J
curr_x = bndpts[curr_pt][0].
curr_y = bndpts[curr_pt]{1];

} /* function move_curr_dir */

/***********************************#****************t***#************##/

print_output_regions()
{
FILE *fdout.
FILE *foutfig:
unsigned short r;
unsigned short s;
int temp;

61




fdout = fopen(outfile, "w+");
foutfig = fopen(outfig, "w+");

if (fdout == NULL) {

printf("Have file opening problem");
}

if (foutfig == NULL) {(
printf("Have file opening problem");

)
/* Writes to file and screen the x and y value for each of the regions. */
/* The stopping conditions of the loops are when the number of regions */
/* generated is reached, and for each region when the flag 9999 is reached. */
/* This function assumes it knows the number of regions (j -1) and the */
/* array element after the last point in each region is flagged. */

fprintf(fdout."module regions\n");
fprintf(fdout,"/*$eject* \n"),
fprintf(fdout,"body.\n"),
for (r = 0; r < j. r++) |
fprintf(fdout,"reg(%hu, [",1);
s =0
do {

/* Convert to inches only for the foutfig file. */

printf("%4hu %4f %4f\n", rregs[r][s1[0}.regs[ri{s][1]);
fprintf(fdout,"[%.1fe0, %.1fe0]" regs(r][s](0],
regs{rl{s](1));
regs[r][s][0] = (regs[r][s}{0] / 10);
regs[r][s][1] = (regslrl{s)i1] / 10);
fprintf(foutfig,"%4f %4f\n " regs[r]{s])[(0],
regs(r]ls][1]);
fprintf(foutfig."%4f %4f\n " regs[ri[s}{0].
regs[r][s](1]):
s++;
if (regs[r](s]{0] '= 9999.000000) {
fprintf(fdout,” \n");
}
} while ((regs{r][s][0] !'= 9999.000000) !
(regs{r](s}{1] != 9999.0000000));
temp = (int)(regs[r]){0}[2)):
fprintf(fdout,”},%hu,%hu) \n" temp,s).
)} /* forr */
fprintf(fdout."numregions(%hu).\n" 1),
fprintf(fdout."endmod.\n");
fclose(fdout);
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fclose(foutfig);

} /* Print the output of the regions. */
/‘* End Of BNDU’I'ILC ****************t*t**##*#*#*#****##***##ttttt#**t*#**/




File header.h
/* This file sets constants and determines the path for the input and */

/* output file for the bndpts.c program. */

#define infile "/work/wade/Thesis/C/rawdata2.h"
#define outfile "/work/wade/Thesis/C/regiondata2.pro”
#define outfig "/work/wade/Thesis/C/regiondata2.fig"
#define boolean int

#define FALSE 0

#define TRUE !(FALSE)

#define North 0

#define NEast 1

#define East 2

#define SEast 3

#define South 4

#define SWest 5

#define West 6

#define NWest 7

/********END of f‘ﬂe headel’.h *****#*********************/




File vdb2.c

/* This file is the main program for getting a 1 Km by 1 Km grid square */
/* from the DTED data base. The program was run on the Silicon Graphics */
/* Computer. The program requires file "files.h” to run. The program is */

/* a variant of a widely used program in the department to get the data */

#include "stdio.h"
#include "ctype.h”
#include "math.h"
#include "files.h"

char infile[50]= MASTER_DMA_DTED_FILE,
int fdin;

main()

{

int fdout.x.z.r,c,i,jutmx,utmz;

int  off ewerror=1,nserror=1,doswap=1;

char s,swap,outfile[50],utmew|5],utmns[5),edbase[20402] temp;
unsigned short raw .elev,veg,massaged,

short MAXUTMEW=659 MAXUTMNS=849 DATAPTS=11;

systemn("clear"”):

printf("THIS PROGRAM WILL CREATE A TERRAIN DATABASE\"),
printf("THE SOURCE DATABASE IS A DEFENSE MAPPING AGENCY
DIGITAL\").

printf("TERRAIN ELEVATION FILE FOR A 36 KM BY 35 KM REGION OFwn");
printf("FORT HUNTER LIGGET, CA. AND VICINITY \n").

printf("THE OUTPUT FILE IS A 1 KM BY 1 KM SUBSET OF THE ENTIREW"),

printf("REGION, AND WILL BE STORED IN THE FORMAT REQUIRED\n");

printf(” 100.0 meter resolution\n").
printf(” 80 x 80 data points\n”);
printf(” storage in z major order\a”);

printf("YOU MUST ENTER THE UTM COORDINATES OF THE SOUTHWEST\n");

printf("CORNER OF THE SUBSET REGION YOU WANT EXTRACTED\n");

printf(” ENTER A CARRIAGE RETURN TO CONTINUE..."),
while(ewerror) |

system(“clear”),

printf(” VALID EW COORDINATES ARE IN THE RANGES:\n").
printf(” EAST-WEST (UTM EW): 410 to %d\n\n" MAXUTMEW),
primf(" sk o kokok ok Kk ko skok ok kok\py )
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printf(" . “n");
printf(" . “n");

printf(" * N “\n"),

printf(" * | “\n"),

printf(" * W-----E “\n");

printf(" * i *\n");

printf(" * S *\n");

printf(” * *\n");

printf(" * *\n");

printf(" **#********##*****#\0");
printf(" | "),

printf(" 410 %d\n" MAXUTMEW);

printf("\n\nENTER the UTM EW coordinate of the southwest comer\n");
printf("  ( Enter an integer value X: 410 <= X <= %d )\n" MAXUTMEW),
printf(" X 7 =>"),

scanf("%d" ,&utmx);

if( (utmx>=410) && (utmx<=MAXUTMEW) ) ewerror=0:

while(nserror) {
system("clear"):

printf(" VALID NS COORDINATES ARE IN THE RANGES:\n");
printf(" NORTH-SOUTH (UTM NS). 600 to %d\n\n" MAXUTMNS),
printf(" Pp3d- FAFFAAAR AR KA A AR\ MAXUTMNS);
printf(" * “\n");

printf(" * *\n"),

printf(" * N *\n");

printf(" * | "),

printf(” * W----- E “\n"),

printf(” * I *\n").

printf(" * S *\n'");

printf(" * *\n"),

printf(" * "),

printf(" GO0- * ¥k ks dkddookkddda\y " ).

printf("\™\nENTER the UTM NS coordinate of the southwest comer\n"),
printf(" ( Enter an integer value Y: 600 <= Z <= %d \n" MAXUTMNS),
printf(" Z 7 ==>"),

scanf("%d",&utmz);

if( (utmz>=600)& & (utmz<=MAXUTMNS) ) nserror=0;

)

system("clear”).
printf("DO YOU WISH ELEVATION DATA WORDS TO HAVE THEIR BYTES
SWAPPED\n"),

printf(" ENTER 'y’ ( YES: SWAP BYTES )\n"),
printf(" ENTER 'n’ ( NO: NO BYTE SWAP \n"):
printf(” SWAP BYTES ==> 7").
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swap = toupper(getchar());

while( (swap != 'Y’) && (swap != 'N’) ) swap=toupper(getchar());
if(swap=="N’) doswap=0,

system("'clear" ),

sprintf(utmew,"%3d" utmx);

sprintf(utmns,"%3d",utmz);

strcpy(outfile, OUTPUTFILE);

if(doswap) strcat(outfile,"swap");

printf('"\nCreating database for a 1km x lkm region, southwest comer");

. printf(""\nat %d - %d. Database will consist of elevation data",utmx,utmz);
printf('""\nfor %d x %d points at 12.5 meter resolution.”",DATAPTS,DATAPTS);
printf("\nDatabase filename is %s\n",outfile);
fdin = open(infile,0);
fdout= creat(outfile 0644);

r = (utmz-600)*8§;
¢ = (utmx-410)*8§;
Iseek(fdin,offset(r,c),0);
for (i = 0; i< 80; i++){
for(j = 0: j< 80; j++){

read(fdin,&raw,2),
veg = ((unsigned short)(raw & 0xe000) >> 13)+48;
write(fdout,&veg,2);
printf("%c" ,veg);
}
printf("™\n");
- )
close(fdout).
close(fdin):
} /* main */

/* This calculates the startpoint for the gridsquare within the */

/* 36 Km by 35 Km database. The 6400 represents the number of data points  */
/* per grid square. The 35 is the number of grid squares in the north/south */

/* direction. */

offset(r,c)

int r,c;

{

return ( 2 * (

(6400 * 35 * (int)(c/80))

+ (6400 * (int)(1/80))
+ ( 80 * (¢%80))
+ ( (r%80))
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)
)

/ﬁ##****End of file VDB2.C ****#*t****#*****#******#********#*#*###/

File files.h
/* This file sets the paths required for input/output to vdb2.c  */

#tdefine MASTER_DMA_DTED_FILE "fusr/work/cdec/DTED/terrain.dat"
#tdefine OUTPUTFILE "usr/work/wade/thesis/rawdata.h"
#define PRINTFILE "usr/work/wade/thesis/rawdata.p”

/‘******Eﬂd of file files.h **‘**#**###*********#**#*t##**t***t**t*/
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T

APPENDIX C SOURCE CODE FOR THE SPLIT-AND-MERGE PHASE

module split-and-merge.
import(reg /4).

) [*$eject*/
body.

dynamic(min_index/1).
dynamic(max_index/1).
dynamic(segment/4).
dynamic(newregions/3).
dynamic(outputlist/1).
dynamic(intermedlist/1).
dynamic(currentregion/1).
dynamic(flag/1).
dynamic(pairlistin/1).
dynamic(pairlistout1/1).
dynamic(pairlistout2/1).
dynamic(sproditem/0).
dynamic(ssumitem/0).
dynamic(incr_gliobal/2).
dynamic(vprodout/1).
dynamic(vprodinl/1).
dynamic(vprodin2/1).
dynamic(sumuplist/1).
dynamic(sumupsum/1 ).

split_threshold(100e-2).
mergethreshold(100e-2).

gol :-
set_state(global_stack.30000).
set_state(main_stack,10000),
system(compress_stacks),
system(garbage_collection),
display_statistics,
handle_adj_regs(reg.newregions),
split_merge(reg.newregions),
print_output,
nl.
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display_statistics :-
nl, stars,
write_tab(18), write("SYSTEM STATUS"),nl,
state(cpu_time X),
write("cpu time = "), write(X),write(" msec"), nl,
state(main_stack, [U,C)),
write("main stack used = "), write(U),nl,
state(global_stack, [UG,CG)),
write("global stack used = "), write(UG),nl,
state(statement_table,[U1,C1)),
write("'statement table used = "), write(Ul), nl,
stars, nl.

stars :- writc("********************#***********#*#*****************#####**"),

nl.

print_output :-
newregions(Regnumber NewPointList,Value),
write("The ")write(Regnumber),write(" Region is: "),nl,
write(NewPointList),nl,
write("The Value is: "), write(Value),nl nl,
fail.
print_output.

handle_adj_regs(INNAME, OUTNAME) :-
del_all_statements(OUTNAME/3),handle_adjl (INNAME, OUTNAME),!.

handle_adjl(INNAME ,OUTNAME) :-
get_a_region(INNAME Regl PL1.V1.NP1),
get_a_region(INNAME Reg2 PL2, V2 NP2),
Regl =/= Reg2,
display_statistics,
check_if_adj(PL1.PL2,AdjPts),!,
display_statistics.
handle_adj2(OUTNAME,Regl ,PL1,VI NP1,Reg2 PL2,V2 NP2 ,AdjPts).
fail.
handle_adjl(INNAME,OUTNAME).

check_if_adj(PL1.PL2 AdjPts) :-
real_intersection(PL1,PL2,AdjPts),
length(AdjPts.LA), write(LA),nl,LA > 0,
.

handle_adj2(OUTNAME Regl PL1,V1 NP1 Reg2,PL2, V2 NP2 AdjPts) :-
display_statistics,
handle_adj3(Regl PL1 NP1 ,AdjPts NewPL1).
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OP =.. [OUTNAME, Regl, NewPLl], V1],
assertz(OP),
handle_adj3(Reg2 PL2,V2 NP2 AdjPts,NewPL2),
0OQ =.. [OUTNAME, Reg2, NewPL2, V2],
assertz(0Q),

fail.

handle_adj2(INNAME , OUTNAME) :- !.

handle_adj3(Reg.PL,NP,AdjPts,NewPL) :-

write("inside adj3"),nl,
set_global(currentregion,PL),
set_global(outputlist,[]),
set_global(intermedlist,[]),
set_global(flag,1),
find_sublist_indices(PL.N1,N2 AdjPts),
get_sublist(PL,1,N1,FPL1),get_sublisttPL N2, NP BPL1),
length(AdjPts,LA),
asserta(segment(Reg N1,N2,100)).
split_into_segments,
asserta(segment(Reg,1.N1,100)),
asserta(segment(Reg N2 NP,100)),
split_into_segments,
set_global(flag.1).set_global(min_index.1),set_global(max_index NP),
adj_merge(Reg N1 ,N2),
build_interimed_list(Reg),
intermedlist(NewlndexList), write(NewIndexList),nl,
length(NewlndexList NewNum), write("new list length is "),
write(NewNum), nl, buildnewlist{NewIndexList. NewPL),
write("The Final Point List is "), write(NewPL), nl,
display_segments_asserted,!.

adj_merge(R P1.P2) :-
display_segments_asserted,nl,
flag(1), set_global(flag.0).
doall(adj_merge_segment(R.P1 P2)).
adj_merge(R.P1 P2).

adj_merge(R,P1,P2).

adj_merge_segment(R P1,P2) :-
segment(R.A B.FAB),segment(R,C.D. FCD). B = C, B =/= PI,
B =/= P2. not segment(R,A,D.FAD).
merge_segment2(R,A,B,C,D,FAB,FCD).

adj_merge_segment(R P1,P2) :-
segment(R.A .B.FAB).segment(R.C.D . FCD). min_index(MIN),
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max_index(MAX),C = MIN, B = MAX, B =/=P1, C =/= P1,
B =/=P2, C =/=P2,
merge_segment3(R,A,B,C,D,FAB,FCD).

split_merge(INNAME, OUTNAME) :-
split_merge2(INNAME,OUTNAME).

split_merge2(INNAME, OUTNAME) :-
get_a_region(INNAME RegNumber PointList, Value, NumPoints),
split_merge3(RegNumber,PointList, NumPoints),
set_global(flag,1), build_intermed_list(RegNumber),
intermedlist(NewIndexList), write(NewIndexList),nl,
length(NewIndexList, NewNum), write("new list length is "),write(NewNum),
buildnewlist(NewIndexList,NewPointList),
write("The Final Point List is "),write(NewPointList),nl,
OP =.. [OUTNAME RegNumber NewPointList,Value],
assertz(OP),
fail.

split_merge2(INNAME, OUTNAME) :- !.

get_a_region(INNAME RegNumber PointList, Value, NumPoints) :-
not segment(RegNumber,PointList,Value, NumPoints),
Q =.. [INNAME RegNumber, PointList,Value, NumPoints], call(Q).

/* This is the main control structure for the split and merge algorithm. */

split_merge3(R PointList. NumPoints) :-
set_global(currentregion,PointList),
set_global(outputlist.[]).
set_global(intermedlist,[]),
set_global(flag.1),
asserta(segment(R,1,NumPoints,100)).
split_into_segments,
display_statistics,
set_global(flag,1),
set_global(min_index,1),
set_global(max_index, NumPoints),
merge_segments(R),
display_segments_asserted,!.

split_into_segments :-
display_segments_asserted,nl.
flag(1). set_global(flag.0). doall(split_into_segment),
split_into_segments.
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split_into_segments.

split_into_segment :-
segment(R,N1,N2 F),split_into_segment2(R,N1,N2,F).

split_into_segment2(R N1 N2 F) :-
split_threshold(T),
F > T, average(N1,N2 N3), retract(segment(R, N1, N2 F)), !
display_statistics,
write("The first sublist indices and fit are: "),
write(N1),write(" "),write(N3),write(" "),nl,
find_fit(R,N1,N3 F13), asserta(segment(R,N1,N3 F13)),
write(F13),nl,
display_statistics,
write("The second sublist indices and fit are: "),
write(N3),write(" "),write(N2),write(" "),
find_fit(R,N3 N2 F32),asserta(segment(R,N3 N2 F32)),
write(F32),nl.
set_global(flag.1),!.

merge_segments(R) :-
display_segments_asserted,nl,
flag(1), set_global(flag.0),
doall(merge_segment(R)),
merge_segments(R).

merge_segments(R).

merge_segment(R) :-
segment(R,N1,N2 F12)segment(R,N3,N4,F34), N2 = N3,
not segment(R N1 ,N4 F3),
nl,write(” Nl= ") write(N1),write(" N2 = ") write(N2),
write(" N3= ") write(N3).write(" N4 = ") write(N4),nl,
merge_segment2(R.N1.N2,N3 N4 F12,F34).
merge_segment(R) :-
segment(R.N1 N2 F12) segment(R.N3 ,N4,F34),
min_index(MIN) max_index(MAX),
N3 = MIN,
N2 = MAX.
write(" Nl= ") write(N1),write(" N2 = ") write(N2),
write(" N3= ") write(N3),write(" N4 = ") write(N4),nl,
merge_segment3(R.N1,N2 N3 N4 F12 F34).

merge_segment2(R N1 N2 N3 N4 F12.F34) .-
display_statistics.
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[ —

find_fit(R,N1,N4,F14),
write("Fit is "),write(F14),nl,
mergethreshold(T), F14 <= T,
asserta(segment(R,N1,N4 F14)),
retract(segment(R,N1 N2 F12)),
retract(segment(R,N3,N4,F34)),
set_global(flag,1), !.
merge_segment3(R,N1,N2 N3 N4 F12, F34) .-
display_statistics,
find_wrap_fit(R,N1,N4,F14),
write("Fit is : "),write(F14),nl,
mergethreshold(T), F14 <= T,
asserta(segment(R,N1,N4 F14)),
retract(segment(R,N1,N2 F12)),
retract(segment(R,N3,N4 F34)),
set_global(min_index,N4),
set_global(max_index,N1),
set_global(flag,1), !.

display_segments_asserted :-
segment(A,B,C,D), write("Reg= "), write(A),
write(" Indices = "), write(B),
write(" "), write(C),
write(" Fit = "), write(D),
nl, fail.

display_segments_asserted :- nl.

average(N1.N2.N3) :-
NP1 is NI + 1, NP1 =/= N2,
N3 is (N2 - N1) div 2) + NI,

find_fit(R.A B Fit) :-
currentregion(X),
A < B,
get_sublist(X.A .B.SubL.ist),ni,
endptlsline(SubList,[C1,C2,C3),
Islinefit(SubList,[C1,C2,C3],Fit).

find_wrap_fit(R.A B Fit) :-
currentregion(X),
A > B,
get_rest_list(X,A,SubListl),
get_sublist(X.1,B.SubList2),
append(SubList].SubList2,SubList),
endptlsline(SubList,|C1,C2,C3})).
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Islinefit(SubList,[C1,C2,C3],Fit).

build_intermed_list(R) :-
flag(1),set_global(flag,0),
doall(get_segments(R)),
intermedlist(IL),
unduplicate(IL,NewIL), sort(NewIL NNewIL),
set_global(intermedlist, NNewIL).

build_intermed_list(R) :- !

get_segments(R) :-
segment(R ,N1,N2 Fit),
get_segments2(R,N1,N2 Fit).

get_segments2(R,N1.N2 Fit):-
cons_global(intermedlist,N1),
cons_global(intermedlist,N2),
set_global(flag.1),!.

buildnewlist(NewIndexList NewPointList) :-
currentregion(PointList),
set_global(outputlist,[]),
buildnewlist2(PointList, NewIndexList),
outputlist(tRNewPointList), reverse(RNewPointList,NewPointList),!.

buildnewlist2(PointList,[]).

buildnewlist2/PointList [NIBNewIndexList]) :-
get_point(PointList,N,Point),
cons_global(outputlist,Point),
buildnewlist2(PointList BNewlndexList).

get_point([AIBPointList],N.A) :-
N=1,1.

get_point([AIBPointList],N,Point) :-
NCis N - 1,
get_point(BPointList NC Point), !.

/* get_sublist is called when List, NI, and N2 are bound: yields SubList */
get_sublist(List. N1 N2 SubList) :-

length(List,LL), LL >= 2,

get_rest_list(List NILL1).(NC2 is N2 - N1 + 2),

get_rest_list(LINC2 |L2),




append(SubList,L2,L.1).

get_rest_list(RestList,N,RestList) :-
N=1,1.

get_rest_list([AIL],N,Restlist) :-
NCis N -1,
get_rest_list(L NC RestList),!.

/* find_sublist_indices is called when List and SubList are bound. *f
find_sublist_indices(List,N1,N2 [FirstiBSubList]) :-

last(BSubList,Last),

find_sublist_indices2(List,1,N3 First),

find_sublist_indices2(List,1 N4 Last),

order_indices(N3,N4 N1,N2), !.

find_sublist_indices2([[X1,Y1]IL],NC,NC,[X2,Y2]):- closer(X1,X2), closer(Y2,Y2),
.

find_sublist_indices2([AIL],NC,N,Point) :-
NC2 is NC + 1 find_sublist_indices2(L,NC2,N Point), !.

order_indices{N1,N2,N1 N2) :- NI <= N2,
order_indices(N1,N2 N2 N1) :- !,

*doall(P) :- not alltried(P).

*alltried(P) :- call(P), fail.
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module linear least-squares.

*split_pairs(L,L1,L2) :- set_global(pairlistin,L), set_global(pairlistoutl,[]),
set_global(pairlistout2,[]), iteratelist(split_pair(L),pairlistin),
pairlistoutl(RL1), pairlistout2(RL2), reverse(RL1,L1), reverse(RL2,L2), !.

*split_pair(L) :- pop_global(pairlistin,[X,Y]), cons_global(pairlistoutl,X),
cons_global(pairlistout2,Y).

*reverse_pairs([],{]).
*reverse_pairs([[A,BJILL],[[B,AJIRLL]) :- reverse_pairs(LL,RLL).

/* Calculates the fit of a least-squares 2D line through a set of points. */

*1sline(PL,[M,-1,B)) :-
split_pairs(PL.XL,YL), vprod(XL XL XXL),
vprod(YL,YL.YYL), vprod(XL,YL XYL),sumup(XL,SXL),sumup(YL,SYL),
sumup(XXL,SXXL), sumup(XYL,SXYL), length(XL,N),
M is (N*SXYL)-(SXL*SYL))/(N*SXXL)-(SXL*SXL)),B is (SYL-(M*SXL))/N, !.

endptlsline([[X1.Y1]IBPL],[C1,C2,C3)) :-
last(BPL,[X2.Y2]).
Cl s (Y1 - Y2),
C2is (X2 - X1), C3 is (X1 * Y2) - (X2 * YD),

*Islinefit(PL,[C1,C2,C3],Fit) :-
abs(C1,ACl),abs(C2,AC2), AC1 > AC2,!,
reverse_pairs(PL .RPL),
Islinefit(RPL.[C2,C1,C3].Fit).

*Islinefit(PL,[C1.C2,C3] Fit) :-
M is (0-C1)/C2, B is (0-C3)/C2,
split_pairs(PL. XL.YL). vprod(XL XL, XXL),
vprod(YL,YL.YYL), vprod(XL. YL XYL), sumup(XL,SXL), sumup(YL,SYL),
sumup(XXL.SXXL). sumup(XYL,SXYL), length(XL,N), sumup(YYL,SYYL),
SqgFit is (M*M*SXXL) + (2*M*B*SXL) + SYYL + (N*B*B) + (-2 *M*SXYL)
+ (-2 *B*SYL),
xsqrt(SqFit,A),D1 is M*M+1, xsqr(D1,D),
Fit is A/D.!.

/* Iterative vector processing */

*sumup(L,N) :- set_global(sumuplist,L). set_global(sumupsum,0),
iteratelist(sumupitem,sumuplist). sumupsum(N), !.

*sumupitem :- pop_global(sumuplist.X), sumupsum(N), retract(sumupsum(N)),
NpX is N+X. asserta(sumupsum(NpX)).
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*yprod(V1,V2,V) :- set_global(vprodout,[]), set_global(vprodinl,V1),
set_global(vprodin2,V2), iteratelist(vproditem,vprodinl),
vprodout(RV), reverse(RV,V), ! .

*yproditem :- pop_global(vprodinl X), pop_global(vprodin2,Y), XY is X*Y,
cons_global(vprodout,XY).

*vsum(V1,V2,V) :- set_global(vsumout,[]),
set_global(vsuminl, V1), set_global(vsumin2,V2),
iteratelist(vsumitem,vsumin!), vsumout(RV), reverse(RV,V), !

*ysumitem :- pop_global(vsuminl,X), pop_global(vsumin2,Y), XY is X+Y,
cons_global(vsumout, XY).

*vdiff(V1,V2,V) :- set_global(vdiffout,[]), set_global(vdiffinl,V1),
set_global(vdiffin2,V2), iteratelist(vdiffitem,vdiffinl),
vdiffout(RV), reverse(RV,V), 1.

*vdiffitem :- pop_global(vdiffinl X), pop_global(vdiffin2,Y), XY is X-Y,
cons_global(vdiffout,XY).

*sprod(V1 ,K,V) :- set_global(sprodout,[]), set_global(sprodin,V1),
iteratelist(sproditem(K),sprodin), sprodout(RV), reverse(RV,V), ..

*sproditem(K) :- pop_global(sprodin,X), NX is X*K, cons_global(sprodout,NX).

*ssum(V1,K,V) :- set_global(ssumout,[]), set_global(ssumin,V1),
iteratelist(ssumitem(K),ssumin), ssumout(RV), reverse(RV,V), !.

*ssumitem(K) :- pop_global(ssumin,X), NX is X+K, cons_global(ssumout,NX).

/* Management of global variables as single-argument facts */
*set_global(Name,Value) :- OLDP =.. [Name,Oldvalue], retract(OLDP),
P =.. [Name, Value], asserta(P), !.

*set_global(Name,Value) :- P =.. [Name,Value], asserta(P), !.

*cons_global(Name,I) :- P=..[Name, X], call(P), retract(P), NP=..[Name,[IIX]],
asserta(NP), !.

*pop_global(Name,Value) :- P=..[Name,[ValuelL}], call(P), retract(P),
NP=..[Name L], asserta(NP), !.

*incr_global(Name) :- P=..[Name X], call(P), retract(P), Xpl is X+1,
NP=..[Name.Xpl], asserta(NP), !.

/* Forward-execution iteration, tenninates when a given list is empty */

*iteratelist(Ipred,Lname) :- repeat, iterate2(Ipred), P=..[Lname,[]],
call(P), !.

*jterate2(Ipred) :- call(Ipred), !.

*jterate2(Ipred).

78




module lists.

/* Various list-processing predicates
/* First, the basics

*last([X],X) .
*]last([XIL],Y) :-
last(L,Y) .

*append({],L,L) .
*append([XIL],L2,[XIL3]) :-
append(L,L2,L3) .

*reverse(L,R) :-
reverse2(L,[],R) .

*reverse2([].L,L) :-
1.
*reverse2([XIL].R.S) :-
reverse2(L,[XIR].S) .

/* Predicates defined from others
*unduplicate({].[]) :-
1

*unduplicate([XIL].L2) :-
member(X,L), !, unduplicate(L ,L2) .

*unduplicate({ XIL],[XIL2]) :-
unduplicate(L.L2) .

*intersection({].L,{]).

*intersection([XIL1}.L2,[XIL3]) :-
member(X.L2), 'antersection(L1,L2 L3).

*intersection(| XIL1j.L2.L3) :-
intersection(L1,L2.L3).

real_intersection([].L,[]).
real_intersection([XIL1].L2,{XIL3)) :-
real_pts_member(X,L2), !real_intersection(L1,L2,L3).
real_intersection([XIL1]},L2 L3) :-
real_intersection({L]1 L2 L3).

real_pts_member([X1,YI][[X2.Y2JIL]) :- X] == X2, Y] == Y2, !

real_pts_member(X,[YIL}) :-
real_pts_member(X.L) .
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*member(X,[XIL]) .
*member(X,[YIL]) :-
member(X,L) .

*singlemember(X,[XIL]) :-
!

*singlemember(X,[YIL]) :-
singlemember(X,L).

module math.

/* Mathematical Formulas not implemented in M-Prolog */
*xsqrt(0,0) :-
!

*xsqrt(X,Y) :-

X<«1, !, square_bisection(Y,X,X,1).
*xsqrt(1,1) :-

!

"'xs.c'{rt(X.Y) -
X>1, RX 1s /X, xsqrt(RX,RY), Y is 1/RY.

*square_bisection(X,Y,LO,HI) :-
X i1s (LO+HI)/2, square(X,S), close(S,Y), !.
*square_bisection(X,Y,LO,HI) :-
MIDPOINT is (LO+HI)/2, square(MIDPOINT,S), S<Y, !,
square_bisection(X,Y MIDPOINT HI).
*square_bisection(X,Y,LOHI) :-
MIDPOINT is (LO+HI)/2. square(MIDPOINT.S), S>=Y, !,
square_bisection(X,Y,LOMIDPOINT).

*close(X.Y) :-
D is X-Y. D > -1.0E-6, D < 1.0E-6.

*closer(X,Y) :-
D is X-Y, D > -1.0E-3, D < 1.0E-3.

*square(X,Y) :-
Y is X*X.

*expon(X.Y) :-
expon2(X,1.1.1,Y).

*expon2(X,N.S.T.S) :-

T<1.0E-6, !.
*expon2(X.NST)Y) :-
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TP1 is X/N*T, SP1 is S+TP1, NP1 is N+1, expon2(X,NP1,SP1,TPL,Y).

abs(X,X) :- X >= 0,!.
abs(X,)Y) .- Yis 0 - X,!.

endmod. /* split_merge */
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